Licence CC BY

La géologie de la Lune

Dernière mise à jour :
Auteurs :

Catégories :

La lune est un astre visible depuis la Terre, rendant son observation aisée : pas besoin d'envoyer des sondes spatiales pour voir sa surface. Du moins, pour ce qui est de voir la face visible depuis la Terre. En conséquence, la surface de la Lune est relativement bien connue, et sa géologie l'est tout autant. D'autres méthodes permettent d'obtenir des informations sur la Lune :

  • l'étude des séismes avec les sismomètres laissés par les missions Apollo ;
  • l'évaluation de la densité de la Lune et de sa rotation ;
  • l'étude des météorites lunaires et de leur composition chimique ;
  • l'étude des échantillons de roche prélevés par les missions Apollo ;
  • l'étude du champ gravitationnel de la Lune avec des satellites en orbite ;
  • l'étude de la topographie de la surface, au télescope ou avec des satellites.

Ces données ont étés utilisées par les planétologues pour étudier la géologie de la Lune. Nous vous proposons de voir ce que les géologue ont découvert.

Volcanisme lunaire

L'observation de la croute montre qu'il n'y a pas de tectonique des plaques, et qu'il n'y en a jamais eu : on n'observe pas de fosses de subductions, de rifts, de dorsales, ou de structures qui impliquent une tectonique des plaques. On pourrait en déduire à tord que le volcanisme est inexistant. Mais dans les faits, la lune a été le théâtre d'un volcanisme de grande ampleur, et certaines traces de volcanisme lunaire sont même visibles depuis la Terre ! Pour comprendre pourquoi, il faut regarder une photographie de la Lune. On voit alors que la surface de la lune n'est pas homogène :

  • les zones claires remplies de cratères sont appelées des terraes ou terres lunaires ;
  • les zones sombres plates, sans cratères : ce sont les mers lunaires.

Photographie de la face visible de la Lune

Mers lunaires

La différence de couleur entre les deux régions provient de différences de composition chimique. Les mers lunaires sont composées essentiellement de basaltes, des roches volcaniques pauvres en silice. Par contre, les terres lunaires sont composés essentiellement d'un minéral nommé anorthosite, très courant dans les roches magmatiques granitiques. Le fait que le basalte des mers soit une roche volcanique indique que les mers sont de gigantesques épanchements de lave, contrairement aux terres lunaires.

Un autre indice vient conforter cette observation : les mers lunaires sont pauvres en cratères, alors que les terres lunaires en sont remplies. En effet, les cratères d'impact n'ont pas été effacés par l'érosion ou par la tectonique des plaques. Les mers ayant peu de cratère, cela signifie qu'il s'agit d'une croute jeune, formée par un volcanisme.

On peut déterminer l'âge de formation de la croûte en comptant les cratères : plus une portion de croûte est âgée, plus elle a reçu d'impacts depuis sa formation. Le comptage des cratères indique que les mers lunaires se sont formées il y a environ 3 à 4 milliards d'années. Quelques mers semblent cependant avoir un âge plus faible, d’environ 1,2 milliard d'années. De nos jours, plus de volcanisme : le manteau de la Lune s'est presque totalement solidifié et le volcanisme est épisodique.

Localisation

Il est intéressant de remarquer que toutes les mers lunaires se trouvent sur la face qui est visible depuis la Terre : la face cachée ne contient presque pas de mer. Les planétologues ont du mal à expliquer cette observation, mais il serait douteux que ce soit une simple coïncidence. Certains supposent une interaction gravitationnelle entre la Terre et la Lune, liée aux marées, d'autres supposent un impact d’astéroïde, d'autres une variation de composition chimique du manteau entre les deux faces, etc. Certains ont émis l'hypothèse que la croûte serait moins épaisse sur la face visible, mais on peut signaler qu'il n'y a pas de mer lunaire au pôle sud, où la croûte est plus mince qu’ailleurs.

Formation

Certaines éruptions ont rempli des cratères d'impact, ce qui fait penser que les éruptions seraient consécutives à des impacts d’astéroïdes : ceux-ci fractureraient la croûte lunaire et permettraient au magma de remonter en surface.

La Mare Imbirum et la mare de la sérénité sont deux exemples de mers lunaires formées par un cratère d'impact. Preuve en est, on trouve des ejectas autour de ces deux mares, des roches projetées hors du cratère lors de l'impact. De plus, les mesures gravimétriques mentionnées plus haut sont compatibles avec une telle origine. Enfin, elles ont une forme de cuvette aux bords circulaire, qui est compatible avec un impact.

Mesures gravimétriques de la face visibles - 2

Néanmoins, certaines mers lunaires ne semblent pas liées à des cratères d'impact. Certains supposent que ces épanchements sont sortis de terre (ou plutôt de Lune), par de gigantesques fissures à travers la croûte lunaire : des éruptions de ce genre ont lieu sur Terre, et sont appelées des éruptions fissurales.

Et Oceanus Procellarum en est un bon exemple. Les premières hypothèses sur sa formation postulaient un gigantesque impact d’astéroïde, mais la forme de cette mare, qui n'est vraiment pas elliptique ou circulaire, ne semblait pas être compatible avec cette hypothèse. Des mesures gravimétriques récentes ont montré que cette mare est entourée d'un réseau de fractures, semblable à un gigantesque rift. Cela renforce ainsi une hypothèse concurrente : cette mare se serait formée par un volcanisme des plus classique, lié à des phénomènes localisés dans le manteau de la Lune.

Mesures gravimétriques de la face visible

Structures de surface

A la surface des mers, on trouve des structures qui ressemblent à des fissures. Ces fissures proviennent du refroidissement du basalte : celui-ci s'est contracté, et s'est fissuré. Ces fissures sont appelées des Wrinkle ridge. Par exemple, on peut citer la Dorsa Smirnov :

Dorsa Smirnov

Dômes et cônes volcaniques

On trouve aussi des dômes de lave, similaires aux dômes des volcans péléens. Ces dômes ont une taille de plusieurs kilomètres de diamètre. Par contre, ces dômes sont composés de basaltes, contrairement à ce qu'on trouve sur Terre où les dômes sont composés de laves beaucoup plus visqueuses et riches en silice. Le plus connu est le Mons Rümker, un ensemble de 30 dômes distincts qui se sont accumulés sur une même zone, mais on trouve aussi des dômes dans la région des Gruitheisen Domes, et dans la zone des Marius Hills.

Mons Rümker

A côté des mers, on trouve de petits édifices volcaniques, similaires aux cônes volcaniques communs sur Terre.

Dépôts mantelliques sombres

Certaines portions de la croûte lunaire sont recouvertes par des dépôts de cendres, qui recouvrent les portions claires de la croûte : ce sont les dépôts mantelliques sombres. Ces dépôts ne sont pas visibles depuis la Terre, mais apparaissent au télescope : ils ont une couleur qui peut être jaune, rouge, ou verte. Ces dépôts sont proches de cônes volcaniques éteints. Le plus large d'entre eux se situe dans la Sinus Aestum, à l'est du cratère Copernicus.

Rilles

On trouve aussi des espèces de canaux, appelés des rilles. Elles forment des canaux qui serpentent sur la surface de la lune. La plupart sont des coulées de lave solidifiées. D'autres sont des vestiges de tunnels de lave solidifiés : ce sont les rilles sinueuses. Elles commencent généralement à un cratère d'impact ou un petit édifice volcanique qui fait saillie à la surface de la croûte. Le meilleur exemple est la Vallis Schröteri, montrée sur cette image provenant d'Apollo 15 :

Vallis Schröteri

Irregular Mare Patches

Les astronomes ont pu observer, au cours de l'année 2014, de petits épanchements de lave solidifiée, qui ne sont pas visibles depuis la Terre. Ces épanchements sont très récents d'un point de vue géologique : ils datent d'environ 100 à 50 millions d'années, soit à peu près la fin des dinosaures sur Terre. Ces épanchements ne font pas plus de 500 mètres de long, et sont peu nombreux : on n'en dénombre que 75 sur toute la surface de la Lune. On nomme ces structures des Irregular Mare Patches, ce nom leur provenant de leur forme, très irrégulière, avec des zones sombres lisses entremêlées de zones claires et craquelées.

Peu de recherches ont été effectuées à l'heure où j'écris cet article (1er Janvier 2015) : seule une étude de la Nasa, datée d'Octobre 2014 est disponible à ma connaissance. L'article en question, publié par la NASA, se nomme "Evidence for basaltic volcanism on the Moon within the past 100 million years"

Roches et minéraux

Dans les grandes lignes, les roches lunaires ont une composition chimique similaire à celle des roches terrestres, avec quelques variations assez significatives. L'absence d'eau à la surface se retrouve dans les météorites lunaires et les échantillons d'Apollo : les roches lunaires n'ont pas de minéraux hydratés, comme on en trouve sur Terre. A eux seuls, quatre types de minéraux constituent 98% de la croûte lunaire : l'olivine, les feldspaths plagioclases, les pyroxènes, et les oxydes.

Terrae

Les terres lunaires sont formées d'Anorthosite intrudée de plutons et d'intrusions granitiques (oui, on trouve des granites sur la Lune). On trouve aussi des roches nommées Dunite, la Trocolite, Gabbro, Anorthosite alcalines, Norites, Gabbronorites. On pense que les Anorthosites se sont formées vers de 4,4 milliards d'années, alors que les autres roches sont plus récentes.

Trocolite rapportée par Apollo 17

Mers lunaires

Les basaltes des volcans lunaires ont une composition chimique légèrement différente des basaltes terrestres : ils sont notamment plus riches en FeO et TiO2 et pauvres en Al2O3. Ils sont légèrement plus riches en olivines et pyroxènes que les terrains environnants, mais pauvres en Feldspath plagioclase. Mais suivant la mer en question, le basalte n'a pas la même composition : les observations dans l'ultraviolet et l'infrarouge ont identifié environ 13 types de basaltes différents sur les mers lunaires.

Certains de ces basaltes sont inconnus sur Terre. Ces basaltes sont riches en potassium, phosphore, et en terres rares : on les appelle des basaltes KREEP. KREEP est l'abréviation de K - REE - P, qui veut dire : Potassium, Rare Earth Element, Phosphor. Ces basaltes KREEP sont localisés dans les mers Oceanus Procellarum et la Mare Imbrium, et ne se trouvent nulle part ailleurs. Cela se voit sur les cartes de la concentration en Thorium de la croûte lunaire, comme celle-ci :

Concentrations en thorium de la croûte lunaire

Régolite lunaire

La surface de la Lune a été soumise à une érosion particulière, l'érosion spatiale, qui a formé un "sol" lunaire : le régolite. Le régolite se forme à la suite de l'altération des roches de la croûte sous l'effet :

  • les impacts de météorites et de micro-météorites ;
  • des rayons cosmiques de haute énergie ;
  • du vent solaire : électrons, ions, etc.

Ces phénomènes vont avoir trois effets sur les roches lunaires :

  • elles vont les briser en fragment : c'est l'effet de comminution ;
  • elles vont souder des particules fines ensemble : c'est l'agglutination ;
  • elles vont déplacer les particules et les faire décoller du sol.

Dans les grandes lignes, cette altération spatiale leur donne une couleur noire à rouge sombre. Les impacts de météorites ont brisé les roches de la croûte en morceaux, leur donnant une taille de plus en plus fine avec la succession des impacts. Du fait de l'absence de vent ou d'eau, les particules formées par comminution ont des tailles très différentes et sont anguleuses (elles n'ont pas été polies par l'érosion).

Lors de certains impacts, il arrive que des particules se soudent sous l'effet de la chaleur ou de la pression, formant des agglutinates. Elles sont composées de petites sphères solides, de petite taille, riches en Fer pur (donnant une couleur sombre à la surface lunaire). D'autres ont une origine volcanique : ce sont des retombées de fontaines de lave ou d'explosions pyroclatiques.

Dans certaines d'entre elles, la chaleur a fait fondre une partie du sol et des roches lunaires, qui ont entouré des fragments de roches et des particules de sol : ces brèches d'impact donnent des blocs de roche entourés d'une matrice vitreuse. Sur les autres brèches, rien n'a fondu, et les particules se sont simplement collées les unes dans les autres sous l'effet de la pression ou de la température.

Le tout crée un régolite composé d'environ quatre couches (de la moins profonde à la plus profonde) :

  • un mégarégolite composé de poussières et de particules très fines ;
  • une couche d'éjectas, des débris éjectés et déposés lors de gros impacts de météorites ;
  • une zone composée de blocs, avec des particules intercalées ;
  • une zone de fractures, formée par les impacts ;
  • la roche-mère, préservée des impacts.

Image de Hateras, disponible sur wikicommons sous licence CC BY-SA 3.0

Structure interne

Les données disent que la Lune a une structure interne similaire à celle de la Terre : une croûte et un manteau de silicates, et un noyau ferreux. On suppose donc qu'elle s'est formée de la même manière que la Terre. Durant sa jeunesse, la planète a été chauffée par les impacts de météorites et par la désintégration d’éléments radioactifs. Elle a ainsi été complètement fondue, formant une grosse boule de magma.

Dans cet océan de magma, les olivines et pyroxènes ont cristallisé en premier et ont sédimentés vers la base du manteau : les basaltes des mers ont une origine mantellique, et sont donc tirés de la fusion de ce résidu d'olivine et de pyroxènes. Par la suite, l'anorthose a cristallisé, et a flotté à la surface pour donner la croûte des terres lunaires. Entre les deux, des basaltes KREEP se seraient formés, par un mélange entre le magma de la croûte, et celui du manteau profond.

Image de Daniel Arnold, disponible sous licence CC BY-SA 3.0 sur wikicommons

Une fois la croute solidifiée, la chaleur a été la source du volcanisme lunaire. Cependant, la Lune était beaucoup plus petite que la Terre. En conséquence, elle contenait beaucoup moins d’éléments radioactifs : ce stock s'est rapidement épuisé, et la production de chaleur a rapidement diminuée. Le manteau de la Lune a donc refroidit assez rapidement. La tectonique des plaques n'a pas eu le temps de se mettre en place, et le manteau a rapidement solidifié dans sa partie supérieure. Depuis, la Lune est un astre géologiquement mort. Cela explique pourquoi le volcanisme de la Lune est assez ancien, alors que le volcanisme terrestre est toujours très actif.

Image de Kelvinsong, traduite par Avatar, wikicommons - licence CC BY-SA 3.0

Croûte

L'absence d'érosion et de tectonique ne signifie pas que la surface de la lune est lisse et plate : le volcanisme et les cratères d'impact ont ajouté un peu de topographie. Ces variations d'altitude donnent des indices sur l'épaisseur de la croûte (à cause de l'équilibre isostatique). Fait étrange, l’élévation semble plus importante sur la face cachée que sur la face visible depuis la Terre : la croûte est plus épaisse sur la face cachée que sur la face visible. Personne ne sait expliquer avec certitude cette observation à l'heure actuelle.

Sous les cratères d'impact, la croûte est sensiblement plus fine qu'ailleurs, et est parfois même absente. Les données gravimétriques montrent une présence de matériaux denses, les mascons, sous certains cratères. Leur origine est débattue : il pourrait d'agir de remontées mantelliques ou d'épanchements de basaltes.

La Lune a un faible champ magnétique, dont l'origine est vraisemblablement l'aimantation de la croûte. Certains pensent qu'il s'agit d'un vestige d'un ancien champ magnétique lié au noyau, mais la faible taille du noyau semble incompatible avec cette hypothèse. D'autres pensent qu'elle provient de champs magnétiques transitoires lors d'impacts de météorites.

Manteau

L'étude du manteau provient essentiellement de l'analyse des séismes lunaires. Les missions Apollo 12, 14, 15 et 16 ont laissé des sismomètres sur la Lune, pour enregistrer les ondes sismiques des tremblements de Lune. Ces sismomètres ont fonctionné jusqu'en 1977, et ont enregistré 1800 impacts de météorites, 28 séismes de surface (20 à 30 kilomètres de profondeur), et pas mal de séismes profonds (700 kilomètres de profondeur).

Les séismes

Des tremblements de lune ont leur foyer dans la croûte, et sont causés par des impacts de météorites, ou par le réchauffement de la croûte lorsque le jour revient (les journées durent 2 semaines sur la Lune).

Les séismes profonds sont les séismes principaux utilisés pour sonder le manteau, mais leurs mécanismes de déclenchement sont mal connus. On pense qu'ils sont dus aux marées, vu que ces séismes se déclenchent approximativement tous les 27 jours pour un même hypocentre, sans compter les périodes de 206 et 6 ans (liées aux marées via la forme de l'orbite de la Lune). Chose étrange, ces séismes proviennent d'un ensemble de 300 foyers tous situés dans la face visible : soit la face cachée est sismiquement inactive, soit quelque chose empêche les ondes de passer de l'autre côté de la planète (un noyau fluide est une bonne explication).

On pense que quelques séismes moins profonds, localisés dans le manteau et la croûte, proviendraient du refroidissement de la Lune. En refroidissant, les roches se contracteraient, et pourraient casser. Ces cassures pourraient causer des séismes de forte ampleur. De tels séismes sont observés, avec une magnitude 4 à 5, même s'ils sont très rares.

L'étude du manteau

L'étude des ondes sismiques des séismes ne donne pas de résultats clairs et nets, à l'heure où j'écris ces lignes. Les analyses des données Apollo semblent indiquer la présence d'une discontinuité sismique à 500 kilomètres de profondeur. Une autre discontinuité existerait vers 580 kilomètres de profondeur : en dessous, le manteau serait partiellement fondu, donnant un océan de magma. Mais les réanalyses des données ne sont pas aussi affirmatives : certaines valident les premières analyses, d'autres donnent des résultats contradictoires et arrivent à expliquer les données sismiques sans avoir besoin du moindre océan de magma ou de la discontinuité des 500 kilomètres. Pas de consensus, donc.

Image de Mark A. Wieczorek, disponible sur wikicommons sous licence CC BY-SA 3.0


1 commentaire

C'est quelque peu incorrect sur certains schémas, on soupçonne de la fusion partielle dans le manteau lunaire (c'est à dire des gouttes de liquide, peu abondantes, mais en aucun cas c'est un magma).

+0 -0
Vous devez être connecté pour pouvoir poster un message.
Connexion

Pas encore inscrit ?

Créez un compte en une minute pour profiter pleinement de toutes les fonctionnalités de Zeste de Savoir. Ici, tout est gratuit et sans publicité.
Créer un compte