Trouver l'inverse d'une fonction

Le problème exposé dans ce sujet a été résolu.

Salut à tous,

j'ai fais un exercice où il faut trouver l'inverse d'une fonction pour résoudre une équation, je me suis trompé sur une fonction et je ne trouve pas pourquoi ce que j'ai mis est faut. Voici la fonction et l'équation

$$ g(x) = e^{-2x}, g(x) = 1 $$

Ma solution est celle-ci $ g^{-1}(x) = \ln(-\frac{x}{2}) $ or la correction offre celle-la $ g^{-1}(x) = -\frac{1}{2} \ln(x) $ et je ne comprend pas bien pourquoi le moins un demi est en dehors du logarithme.

Je vous remercie d'avance de votre aide.

+0 -0

Voici les étapes de mon raisonnement:

  • donc j'ai $ g(x) = e^{-2x} $

  • je commence par la fonction inverse de la multiplication par moins 2 ce qui me fais $ e^{-\frac{1}{2} x} $

  • et la fonction inverse de l'exponentielle $ \ln(-\frac{1}{2}x) $

ce qui me donne au final

$$ g^{-1} = \ln(-\frac{x}{2}) $$

PS : C'est vraiment chiant qu'on ait pas d’aperçu des formules quand on clique sur aperçu

+0 -0

Nope. Ton erreur, c'est que tu composes à l'envers les transformations que tu fais.

Une vraie méthode, c'est écrire

$$ \exp(-2x) = y $$
et de trouver $x$ en fonction de $y$. Tu te rends alors immédiatement compte qu'il faut commencer par composer par $\log$ et ensuite diviser par $2$.

Je me permet aussi de préciser ton vocabulaire, en passant. En français, on utilise aussi le nom de fonction inverse pour la fonction f telle que $f(x) =\frac{1}{x} $. On préfère alors utiliser le terme de fonction réciproque pour ce dont tu parles ici.

Connectez-vous pour pouvoir poster un message.
Connexion

Pas encore membre ?

Créez un compte en une minute pour profiter pleinement de toutes les fonctionnalités de Zeste de Savoir. Ici, tout est gratuit et sans publicité.
Créer un compte