Ce que je trouve de plus approchant de ce que tu demandes, c'est ce qui suit.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | $$
\begin{array}{c c c}
\left\{ \begin{aligned}
\dfrac{\delta u}{\delta x} &= \dfrac{\delta v}{\delta y} \\
\dfrac{\delta u}{\delta y} &= -\dfrac{\delta v}{\delta x}
\end{aligned} \right. &
\left\{ \begin{aligned}
3y &= 3 \\
x &= 3x^2+6x
\end{aligned} \right. &
\left\{ \begin{aligned}
y &= 1 \\
x&=0 \text{ or }x=1
\end{aligned} \right.
\end{array}
$$
|
Qui donne le résultat suivant.
$$
\begin{array}{c c c}
\left\{ \begin{aligned}
\dfrac{\delta u}{\delta x} &= \dfrac{\delta v}{\delta y} \\
\dfrac{\delta u}{\delta y} &= -\dfrac{\delta v}{\delta x}
\end{aligned} \right. &
\left\{ \begin{aligned}
3y &= 3 \\
x &= 3x^2+6x
\end{aligned} \right. &
\left\{ \begin{aligned}
y &= 1 \\
x&=0 \text{ or }x=1
\end{aligned} \right.
\end{array}
$$
Ou encore
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | $$
\begin{array}{ccccc}
\left\{ \begin{aligned}
\dfrac{\delta u}{\delta x} &= \dfrac{\delta v}{\delta y} \\
\dfrac{\delta u}{\delta y} &= -\dfrac{\delta v}{\delta x}
\end{aligned} \right. &
\left\{ \begin{aligned}
\, \\
\, \\
\, \\
\,
\end{aligned} \right. &
\begin{aligned}
3y &= 3 \\
\\
x &= 3x^2+6x
\end{aligned} &
\left\{ \begin{aligned}
\, \\
\, \\
\, \\
\,
\end{aligned} \right. &
\begin{aligned}
y &= 1 \\
\\
x&=0 \text{ or }x=1
\end{aligned}
\end{array}
$$
|
qui donne
$$
\begin{array}{ccccc}
\left\{ \begin{aligned}
\dfrac{\delta u}{\delta x} &= \dfrac{\delta v}{\delta y} \\
\dfrac{\delta u}{\delta y} &= -\dfrac{\delta v}{\delta x}
\end{aligned} \right. &
\left\{ \begin{aligned}
\, \\
\, \\
\, \\
\,
\end{aligned} \right. &
\begin{aligned}
3y &= 3 \\
\\
x &= 3x^2+6x
\end{aligned} &
\left\{ \begin{aligned}
\, \\
\, \\
\, \\
\,
\end{aligned} \right. &
\begin{aligned}
y &= 1 \\
\\
x&=0 \text{ or }x=1
\end{aligned}
\end{array}
$$
J'arrive pas à trouver comment définir la largeur des colonnes pour supprimer l'espace blanc entre les accolades et le texte.