Messages postés par "Würtz"

3 messages sont invisibles car dans un sujet inaccessible.

Sujet Date Extrait
Compréhension d'une notation
dimanche 30 juillet 2017 à 20h17 Dans la plupart des manuels, R barre signifie l'adhérence de l'ensemble R qui par définition est le plus petit fermé contenant R , d'où l'égalité souhaité.
Équivalent prépa / université au niveau programme
mercredi 19 juillet 2017 à 08h22 En ce qui concerne l'université de Pierre et Marie Curie et Je pense que c'est à peu près la même chose pour les autres fac, tous les enseignements de L3 n'auront pas été abordés en prepas ou alors j…
Factorisation
dimanche 16 juillet 2017 à 19h41 A = (1+2x)(1-4x)+1-4x^2 = (1+2x)(1-4x)+(1-2x)(1+2x) A = (1+2x)(1-4x+1-2x) A = (1+2x)(2-6x) J'ai juste introduit la lettre A Pour Pas avoir à tout recopier car je suis sur téléphone.
Qu'apprendre avant une rentrée en L2 math ?

Et en règle générale, que peut t-on etudier seul...

dimanche 11 juin 2017 à 00h19 @Holosmos: quand t'es en première année de médecine par exemple il est plutôt très recommandé de Pas travailler pendant les vacances... Sinon à ta place color, je réviserais tout ce qui tourne aut…
Limite de fonction a plusieurs variables

Des techniques ..?

vendredi 12 mai 2017 à 13h09 Pour savoir si la fonction admet une limite en a, il faut avoir de l'intuition, par exemple en (0,0,0) ( souvent le problème se situe en 0) si tu as une fonctions rationnelle genre f(x,y,z) = xyz/x^2…
Intégrale multiple

Volume

lundi 03 avril 2017 à 18h10 > Pour $z\geq 0$ fixé, c'est quoi la courbe donnée par $z=x^2+y^2$ ? Source:[Holosmos](https://zestedesavoir.com/forums/sujet/8346/integrale-multiple/?page=1#p146230) C'est une paraboloïde ?
Intégrale multiple

Volume

lundi 03 avril 2017 à 17h31 Bonjour, je suis en train de m'exercer sur les intégrales multiples mais je rencontre un problème avec cet exercice : Calculer le volume compris entre : 1) la surface d'équation $z= x^{2} + y^{2}…
Notion de topologie

Licence 2

samedi 25 février 2017 à 20h29 > Comment ça retrouver ? Source:[Holosmos](https://zestedesavoir.com/forums/sujet/8067/notion-de-topologie/?page=1#p142504) Bah pour déterminer l'adhérence et l'intérieur de A comment je fait ? T…
Notion de topologie

Licence 2

samedi 25 février 2017 à 19h57 Comment je retrouve l'ensemble A? j'avoue ne pas savoir ...
Notion de topologie

Licence 2

vendredi 24 février 2017 à 23h30 L'intérieur c'est le plus grand ouvert inclus dans E et l'adhérence est le plus petit fermé contenant E. La frontière est définie comme l'adhérence privé de l'intérieur. Du coup avec ces définitions …
Notion de topologie

Licence 2

vendredi 24 février 2017 à 16h57 > > En fait je viens d’avoir un déclic je crois, est ce que le complémentaire de ]-infini,4] est ]4,+infini[ ?? > > À ton avis ? Source:[Holosmos](https://zestedesavoir.com/forums/sujet/8067/noti…
Notion de topologie

Licence 2

vendredi 24 février 2017 à 16h44 > Est-ce que l'image réciproque d'un ouvert est ouverte ? > > Est-ce que l'image réciproque d'un complémentaire est le complémentaire de l'image réciproque ? > > Est-ce que $]-\infty,4]$ est fe…
Notion de topologie

Licence 2

vendredi 24 février 2017 à 16h27 > L'image réciproque par une application continue d'un fermé est-elle fermée ? Source:[Holosmos](https://zestedesavoir.com/forums/sujet/8067/notion-de-topologie/?page=1#p142323) Oui c'est cette p…
Notion de topologie

Licence 2

vendredi 24 février 2017 à 16h11 Salut :) Dans l'approche d'un partiel sur les fonctions à plusieurs variables, j'ai quelques question sur le premier chapitre concernant quelques notions de topologies. Voilà par exemple un ex…
Théorème de composition des limites
jeudi 16 février 2017 à 11h16 Le fait de prendre la limite de g(y) égale a g(b) quand y tends vers b est juste la transcription mathématique de la phrase "g est continue en b" et permet donc d'utiliser la définition de la continu…
Ecrire son blog de science

Des conseils, des avis, des retours sur des expériences passées ?

samedi 21 janvier 2017 à 01h59 A titre personnel, en étant en L2 de maths cela m'intéresserai fortement. Je suis un peu comme toi, c'est-à-dire un peu touche à tout donc si tu finis par mettre ton idée en œuvre n'oublie pas de pub…
Arithmétique sur K[X]

arithmétique/algèbre linéaire

jeudi 29 décembre 2016 à 13h46 > Par contre on a certains théorèmes pour montrer qu'un polynôme d'une certaine forme n'est pas irréductible. C'est beaucoup plus facile à construire que l'inverse. ;) Source:[unidan](https://zeste…
Cours d'analyse vectorielle
jeudi 29 décembre 2016 à 13h45 > Il faut reprendre tous les arguments et les relier à ton cours. :) > C'est (c'était en tout cas) au programme de spé en physique. Laborieux mais pas difficile à comprendre. Source:[unidan](http…
Arithmétique sur K[X]

arithmétique/algèbre linéaire

mercredi 28 décembre 2016 à 12h22 > Pour montrer qu'il est irréductible dans $\mathbb F_2$, tu peux par exemple tester tous les éléments de ce corps ... ils ne sont que 2 ! Source:[Holosmos](https://zestedesavoir.com/forums/sujet/76…
Arithmétique sur K[X]

arithmétique/algèbre linéaire

mercredi 28 décembre 2016 à 03h02 Salut les agrumes, je bloque sur un petit exercice d'arithmétique/algèbre linéaire . Exercice 3. On considère le polynôme $P(X)=X^{4}+X+1 \in \mathbb F_{2} [X] $ et soit $ K=\mathbb F_{2} [X]/(…
Etude de Série

Produit de Cauchy

mardi 06 décembre 2016 à 17h22 Voilà le théorème exacte que j'ai dans mon cours : Soient $\sum_{n=0}^{\infty} A_{n} $ et $\sum_{n=0}^{\infty} B_{n} $ deux séries à termes positifs convergentes. Alors la série $\sum_{n=0}^{…